
Nick Becker
RAPIDS Engineering

The Platform Inside and Out

2

RAPIDS
End-to-End Accelerated GPU Data Science

cuDF cuIO
Analytics

 GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer
MxNet

Deep Learning

cuxfilter <> pyViz
Visualization

Dask

3

Data Processing Evolution
Faster data access, less data movement

25-100x
Improvement

Less code
Language flexible

Primarily In-Memory

HDFS
Read

HDFS
Write

HDFS
Read

HDFS
Write

HDFS
ReadQuery ETL ML Train

HDFS
Read Query ETL ML Train

HDFS
Read

GPU
ReadQuery

CPU
Writ

e

GPU
Read ETL

CPU
Writ

e

GPU
Read

ML
Train

5-10x Improvement
More code

Language rigid
Substantially on GPU

Traditional GPU Processing

Hadoop Processing, Reading from disk

Spark In-Memory Processing

4

APP A

Data Movement and TransformationData Movement and Transformation
The bane of productivity and performance

CPU

APP B

Copy & Convert

Copy & Convert

Copy & Convert

APP A GPU
Data

APP B
GPU
Data

Read Data

Load Data

APP B

APP A

GPU

5

Data Movement and TransformationData Movement and Transformation
What if we could keep data on the GPU?

APP A

APP B

Copy & Convert

Copy & Convert

Copy & Convert

Read Data

Load Data

CPU

APP A GPU
Data

APP B
GPU
Data

APP B

APP A

GPUCopy & Convert

6

Learning from Apache Arrow

From Apache Arrow Home Page - https://arrow.apache.org/

● Each system has its own internal memory format
● 70-80% computation wasted on serialization and deserialization
● Similar functionality implemented in multiple projects

● All systems utilize the same memory format
● No overhead for cross-system communication
● Projects can share functionality (eg, Parquet-to-Arrow

reader)

7

Data Processing Evolution
Faster data access, less data movement

25-100x
Improvement

Less code
Language flexible

Primarily In-Memory

HDFS
Read

HDFS
Write

HDFS
Read

HDFS
Write

HDFS
ReadQuery ETL ML Train

HDFS
Read Query ETL ML Train

HDFS
Read

GPU
ReadQuery

CPU
Writ

e

GPU
Read ETL

CPU
Writ

e

GPU
Read

ML
Train

Arrow
Read ETL ML

Train

5-10x Improvement
More code

Language rigid
Substantially on GPU

50-100x Improvement
Same code

Language flexible
Primarily on GPU

RAPIDS

Traditional GPU Processing

Hadoop Processing, Reading from disk

Spark In-Memory Processing

Query

8

Faster Speeds, Real-World Benefits
cuIO/cuDF –
Load and Data Preparation XGBoost Machine Learning

Time in seconds (shorter is better)
cuIO/cuDF (Load and Data Prep) Data Conversion XGBoost

Benchmark

200GB CSV dataset; Data prep includes
joins, variable transformations

CPU Cluster Configuration
CPU nodes (61 GiB memory, 8 vCPUs,
64-bit platform), Apache Spark

DGX Cluster Configuration
5x DGX-1 on InfiniBand
network

8762

6148

3925

3221

322

213

End-to-End

9

Faster Speeds, Real-World Benefits
cuIO/cuDF –
Load and Data Preparation XGBoost Machine Learning

Time in seconds (shorter is better)
cuIO/cuDF (Load and Data Prep) Data Conversion XGBoost

Benchmark

200GB CSV dataset; Data prep includes
joins, variable transformations

CPU Cluster Configuration
CPU nodes (61 GiB memory, 8 vCPUs,
64-bit platform), Apache Spark

DGX Cluster Configuration
5x DGX-1 on InfiniBand
network

End-to-End

Improving Over Time

10

Speed, Ease of Use, and Iteration
The Way to Win at Data Science

11

RAPIDS Core

12

Pandas
Analytics

CPU Memory

Data Preparation VisualizationModel Training

Scikit-Learn
Machine Learning

NetworkX
Graph Analytics

PyTorch Chainer
MxNet

Deep Learning

Matplotlib/Plotly
Visualization

Open Source Data Science Ecosystem
Familiar Python APIs

Dask

13

cuDF cuIO
Analytics

 GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer
MxNet

Deep Learning

cuxfilter <> pyViz
Visualization

RAPIDS
End-to-End Accelerated GPU Data Science

Dask

14

Dask

15

cuDF cuIO
Analytics

 GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer
MxNet

Deep Learning

cuxfilter <> pyViz
Visualization

RAPIDS
Scaling RAPIDS with Dask

Dask

16

Why Dask?

• Easy Migration: Built on top of NumPy, Pandas
Scikit-Learn, etc.

• Easy Training: With the same APIs
• Trusted: With the same developer community

PyData Native

• Easy to install and use on a laptop
• Scales out to thousand-node clusters

Easy Scalability

• Most common parallelism framework today in
the PyData and SciPy community

Popular

• HPC: SLURM, PBS, LSF, SGE
• Cloud: Kubernetes
• Hadoop/Spark: Yarn

Deployable

17

Why OpenUCX?

• TCP sockets are slow!

• UCX provides uniform access to transports (TCP,
InfiniBand, shared memory, NVLink)

• Alpha Python bindings for UCX (ucx-py)

• Will provide best communication performance, to Dask
based on available hardware on nodes/cluster

Bringing hardware accelerated communications to Dask

conda install -c conda-forge -c rapidsai \
 cudatoolkit=<CUDA version> ucx-proc=*=gpu ucx ucx-py

18

cuDF v0.13, UCX-PY 0.13

Running on NVIDIA DGX-1 (8GPUs):

GPU: NVIDIA Tesla V100 32GB
CPU: Intel(R) Xeon(R) CPU 8168
 @ 2.70GHz

Benchmark Setup:

DataFrames: Left/Right 1x int64 column key
column, 1x int64 value columns

Merge: inner

30% of matching data balanced across each
partition

Benchmarks: Distributed cuDF Random Merge

19

cuDF

20

cuDF cuIO
Analytics

 GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer
MxNet

Deep Learning

cuxfilter <> pyViz
Visualization

RAPIDS
GPU Accelerated data wrangling and feature engineering

Dask

21

GPU-Accelerated ETL
The average data scientist spends 90+% of their time in ETL as opposed to training

models

22

ETL Technology Stack

Dask cuDF
cuDF

Pandas

Thrust
Cub

Jitify

Python

Cython

cuDF C++

CUDA Libraries

CUDA

23

ETL: the Backbone of Data Science
libcuDF is…

CUDA C++ Library

● Table (dataframe) and column types and
algorithms

● CUDA kernels for sorting, join, groupby,
reductions, partitioning, elementwise
operations, etc.

● Optimized GPU implementations for
strings, timestamps, numeric types
(more coming)

● Primitives for scalable distributed ETL

std::unique_ptr<table>
gather(table_view const& input,
 column_view const& gather_map, …)
{

// return a new table containing
 // rows from input indexed by
 // gather_map
}

24

ETL: the Backbone of Data Science
cuDF is…

Python Library

● A Python library for manipulating GPU
DataFrames following the Pandas API

● Python interface to CUDA C++ library with
additional functionality

● Creating GPU DataFrames from Numpy arrays,
Pandas DataFrames, and PyArrow Tables

● JIT compilation of User-Defined Functions
(UDFs) using Numba

25

cuDF v0.13, Pandas 0.25.3

Running on NVIDIA DGX-1:

GPU: NVIDIA Tesla V100 32GB
CPU: Intel(R) Xeon(R) CPU E5-2698 v4
 @ 2.20GHz

Benchmark Setup:

RMM Pool Allocator Enabled

DataFrames: 2x int32 columns key columns,
3x int32 value columns

Merge: inner

GroupBy: count, sum, min, max calculated
for each value column

Benchmarks: single-GPU Speedup vs. Pandas

26

cuDF cuIO
Analytics

 GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer
MxNet

Deep Learning

cuxfilter <> pyViz
Visualization

Dask

ETL: the Backbone of Data Science
cuDF is not the end of the story

27

ETL: the Backbone of Data Science
String Support

•Regular Expressions
•Element-wise operations

• Split, Find, Extract, Cat, Typecasting, etc…
•String GroupBys, Joins, Sorting, etc.
•Categorical columns fully on GPU
•Native String type in libcudf C++

Current v0.13 String Support

• Further performance optimization
• JIT-compiled String UDFs

Future v0.14+ String Support

28

● Follow Pandas APIs and provide >10x speedup

● CSV Reader - v0.2, CSV Writer v0.8
● Parquet Reader – v0.7, Parquet Writer v0.12
● ORC Reader – v0.7, ORC Writer v0.10
● JSON Reader - v0.8
● Avro Reader - v0.9

● GPU Direct Storage integration in progress for
bypassing PCIe bottlenecks!

● Key is GPU-accelerating both parsing and
decompression wherever possible

Source: Apache Crail blog: SQL Performance: Part 1 - Input File Formats

Extraction is the Cornerstone
cuDF I/O for Faster Data Loading

http://crail.incubator.apache.org/blog/2018/08/sql-p1.html

29

ETL is not just DataFrames!

30

 GPU Memory

Data Preparation VisualizationModel Training

RAPIDS
Building bridges into the array ecosystem

Dask

cuDF cuIO
Analytics

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer
MxNet

Deep Learning

cuxfilter <> pyViz
Visualization

31

Interoperability for the Win
DLPack and __cuda_array_interface__

mpi4py

32

ETL: Arrays and DataFrames
Dask and CUDA Python arrays

• Scales NumPy to distributed clusters
• Used in climate science, imaging, HPC analysis

up to 100TB size
• Now seamlessly accelerated with GPUs

33

Benchmark: single-GPU CuPy vs NumPy

More details: https://blog.dask.org/2019/06/27/single-gpu-cupy-benchmarks

https://blog.dask.org/2019/06/27/single-gpu-cupy-benchmarks

34

SVD Benchmark
Dask and CuPy Doing Complex Workflows

35

Architecture Time

Single CPU Core 2hr 39min

Forty CPU Cores 11min
30s

One GPU 1min 37s

Eight GPUs 19s

Petabyte Scale Analytics with Dask and CuPy

Cluster configuration: 20x GCP instances, each
instance has:
CPU: 1 VM socket (Intel Xeon CPU @ 2.30GHz),
2-core, 2 threads/core, 132GB mem, GbE ethernet,
950 GB disk
GPU: 4x NVIDIA Tesla P100-16GB-PCIe (total GPU
DRAM across nodes 1.22 TB)
Software: Ubuntu 18.04, RAPIDS 0.5.1, Dask=1.1.1,
Dask-Distributed=1.1.1, CuPY=5.2.0, CUDA 10.0.130

https://blog.dask.org/2019/01/03/dask-array-gpus-first-steps

36

cuML

37

 GPU Memory

Data Preparation VisualizationModel Training

Dask

Machine Learning
More models more problems

cuDF cuIO
Analytics

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer
MxNet

Deep Learning

cuxfilter <> pyViz
Visualization

38

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Massive Dataset

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.

Iterate. Cross Validate & Grid Search.

Iterate some more.

Meet reasonable speed vs accuracy
tradeoff

Hours? Days?

Time
Increase

s

39

ML Technology Stack

Python

Cython

cuML Algorithms

cuML Prims

CUDA Libraries

CUDA

Dask cuML
Dask cuDF

cuDF
Numpy

Thrust
Cub

cuSolver
nvGraph
CUTLASS
cuSparse
cuRand
cuBlas

40

Algorithms
GPU-accelerated Scikit-Learn

Classification / Regression

Inference

Clustering

Decomposition & Dimensionality Reduction

Time Series

Decision Trees / Random Forests
Linear Regression
Logistic Regression
K-Nearest Neighbors
Support Vector Machines

Random forest / GBDT inference

K-Means
DBSCAN
Spectral Clustering

Principal Components
Singular Value Decomposition
UMAP
Spectral Embedding
T-SNE

Holt-Winters
Seasonal ARIMA

Cross Validation

More to
come!

Hyper-parameter Tuning Key:
● Preexisting
● NEW or enhanced for

0.13

41

RAPIDS matches common Python APIs

from sklearn.cluster import DBSCAN
dbscan = DBSCAN(eps = 0.3, min_samples = 5)

dbscan.fit(X)

y_hat = dbscan.predict(X)

Find Clusters

from sklearn.datasets import make_moons
import pandas

X, y = make_moons(n_samples=int(1e2),
 noise=0.05, random_state=0)

X = pandas.DataFrame({'fea%d'%i: X[:, i]
 for i in range(X.shape[1])})

CPU-Based Clustering

42

RAPIDS matches common Python APIs

from cuml import DBSCAN
dbscan = DBSCAN(eps = 0.3, min_samples = 5)

dbscan.fit(X)

y_hat = dbscan.predict(X)

Find Clusters

from sklearn.datasets import make_moons
import cudf

X, y = make_moons(n_samples=int(1e2),
 noise=0.05, random_state=0)

X = cudf.DataFrame({'fea%d'%i: X[:, i]
 for i in range(X.shape[1])})

GPU-Accelerated Clustering

43

Benchmarks: single-GPU cuML vs scikit-learn

1x V100
 vs.

2x 20 core CPU

44

cuML’s Forest Inference Library
accelerates prediction (inference) for
random forests and boosted decision
trees:

● Works with existing saved models
(XGBoost, LightGBM, scikit-learn RF
cuML RF soon)

● Lightweight Python API
● Single V100 GPU can infer up to 34x

faster than XGBoost dual-CPU node
● Over 100 million forest inferences

per sec (with 1000 trees) on a DGX-1
for large (sparse) or dense models

Forest Inference
Taking models from training to production

23x 36x 34x 23x

45

● RAPIDS works closely with the
XGBoost community to accelerate
GBDTs on GPU

● The default rapids conda
metapackage includes XGBoost

● XGBoost can seamlessly load data
from cuDF dataframes and cuPy
arrays

● Dask allows XGBoost to scale to
arbitrary numbers of GPUs

● With the gpu_hist tree method, a
single GPU can outpace 10s to 100s
of CPUs

● Version 1.0 of XGBoost launched
with the RAPIDS 0.13 stack.

+

46

Road to 1.0
March 2020 - RAPIDS 0.13

47

Road to 1.0
2020 - RAPIDS 1.0

48

cuGraph

49

 GPU Memory

Data Preparation VisualizationModel Training

Dask

Graph Analytics
More connections more insights

cuDF cuIO
Analytics

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer
MxNet

Deep Learning

cuxfilter <> pyViz
Visualization

50

Goals and Benefits of cuGraph
Focus on Features and User Experience

• Property Graph support via DataFrames

Seamless Integration with cuDF and cuML

• Up to 500 million edges on a single 32GB GPU
• Multi-GPU support for scaling into the billions of

edges

Breakthrough Performance

• Python: Familiar NetworkX-like API
• C/C++: lower-level granular control for

application developers

Multiple APIs

• Extensive collection of algorithm, primitive,
and utility functions

Growing Functionality

51

Algorithms
GPU-accelerated NetworkX

Community

Components

Link Analysis

Link Prediction

Traversal

Centrality

Spectral Clustering
Balanced-Cut
Modularity Maximization

Louvain
Ensemble Clustering for Graphs
Subgraph Extraction
KCore and KCore Number
Triangle Counting
K-Truss

Jaccard
Weighted Jaccard
Overlap Coefficient

Single Source Shortest Path (SSSP)
Breadth First Search (BFS)

Graph Classes

Multi-GPU

More to
come!

Utilities

Weakly Connected Components
Strongly Connected Components

Katz
Betweenness Centrality

Structure

Renumbering
Auto-renumbering

Page Rank (Multi-GPU)
Personal Page Rank

52

Multi-GPU PageRank Performance

PageRank portion of the HiBench benchmark suite

HiBench Scale Vertices Edges CSV File
(GB)

of V100
GPUs

of CPU
Threads

PageRank for
3 Iterations (secs)

Huge 5,000,000 198,000,000 3 1 1.1

BigData 50,000,000 1,980,000,000 34 3 5.1

BigData x2 100,000,000 4,000,000,000 69 6 9.0

BigData x4 200,000,000 8,000,000,000 146 12 18.2

BigData x8 400,000,000 16,000,000,000 300 16 31.8

BigData x8 400,000,000 16,000,000,000 300 800* 5760*

*BigData x8, 100x 8-vCPU nodes, Apache Spark GraphX ⇒ 96 mins!

53

Community

54

Ecosystem Partners

55

Building on top of RAPIDS
A bigger, better, stronger ecosystem for all

Streamz

High-Performance
Serverless event and
data processing that
utilizes RAPIDS for GPU
Acceleration

Distributed stream
processing using
RAPIDS and Dask

GPU accelerated SQL
engine built on top of
RAPIDS

56

Easy Installation
Interactive Installation Guide

57

Contribute Back
Issues, feature requests, PRs, Blogs, Tutorials, Videos, QA...bring your best!

58

Getting Started

59

RAPIDS Docs
Improved and easier to use!

https://docs.rapids.ai

60

• https://ngc.nvidia.com/registry/nvidia-rapidsai
-rapidsai

• https://hub.docker.com/r/rapidsai/rapidsai/

• https://github.com/rapidsai

• https://anaconda.org/rapidsai/

RAPIDS
How do I get the software?

https://ngc.nvidia.com/registry/nvidia-rapidsai-rapidsai
https://ngc.nvidia.com/registry/nvidia-rapidsai-rapidsai
https://hub.docker.com/r/rapidsai/rapidsai/
https://github.com/rapidsai
https://anaconda.org/rapidsai/

THANK YOU

Nick Becker

nicholas@nvidia.com

